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Abstract: The immersion of voluminous collection of data is inevitable almost 
everywhere. The invention of mathematical models to analyse the patterns and 
trends of the data is an emerging necessity to extract and predict useful 
information in any Knowledge Discovery from Data (KDD) process. The 
Formal Concept Analysis (FCA) is an efficient mathematical model used in the 
process of KDD which is specially designed to portray the structure of the data 
in a context and depict the underlying patterns and hierarchies in it. Due to the 
huge increase in the application of FCA in various fields, the number of 
research and review articles on FCA has raised to a large extent. This review 
differs from the existing ones in presenting the comprehensive survey on the 
fundamentals of FCA in a compact and crisp manner to benefit the beginners 
and its focuses on the scalability issues in FCA. Further, we present the generic 
anatomy of FCA apart from its origin and growth at a primary level. 
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1. Introduction 

The developments of information technologies and network have produced huge 
collection of data every year from different trades. The data flows from various fields 
such as information technology, agriculture, medicine, finance, markets, social science, 
demography, etc. This data has no direct information and it is concealed in the data. 
Extracting the useful information from the huge data is known as knowledge discovery 
and is an important task in any knowledge based system. According to Han and Kamber 
(2006), knowledge discovery is to discover the rules and patterns that exist in the data by 
which one can foretell the trends of the future in the system. So, the invention of methods 
and means to automatically analyse the patterns and trends of the data is an emerging 
necessity in order to extract and predict useful information to the society (Malzahn, 
Ziebarth, & Hoppe, 2013; Mattingly, Rice, & Berge, 2012; Zushi, Miyazaki, & Norizuki, 
2012). This is an important issue and apparently has high priority. 

To this end, several researchers have proposed various models and techniques 
(Huang, Yang, Chen, & Wu, 2012). Among such models, mathematical models have 
contributed enormously to understand the KDD (Knowledge Discovery from Data) 
precisely. Some of such models are: Set theory, Rough set theory, Fuzzy set theory, 
Probabilistic set theory, Intuitionistic set theory, Soft set theory, etc. Along these 
mathematical models falls the lattice theory based notion of Formal Concept Analysis 
(FCA) (Wille, 1982). FCA concentrates mainly on the clustering of certain objects and 
attributes which are termed as concepts by which the functionality of cluster analysis 
from knowledge discovery point of view is carried out. Under the poset relation the 
concepts can be presented in a form of lattice due to which the functionalities such as 
presentation and prediction of information can be carried out. The functionality of 
determining associations can be achieved by finding the implications for the given 
context using FCA. Thus, FCA based techniques in the practices of knowledge discovery 
process yield fruitful results to the users. 

The extraction of knowledge using FCA from any database is of three dimensions 
viz., conceptual clusters, lattices (graphical representation) and association rules. 
Concepts express the underlying relationships between objects and attributes in the 
context; a concept lattice portrays the context graphically; and the association rules 
discover the underlying associations within the attributes of the context. 

Although FCA is an important formalism for knowledge representation, 
extraction and analysis, one of the major issues in FCA is the issue of scalability arising 
due to the size of the contexts which yield bigger concept lattices. As the size of the 
concept lattice increases, the visualisation of concepts along with hierarchy becomes 
complex and impractical. This complexity issue arises due to the scalability of FCA and 
its extensions in various environments. According to Poelmans, Ignatov, Kuznetsov, and 
Dedene (2013) the scalability issue is focused in 9% of the articles on FCA. We also 
point out the scalability issue in FCA and review it. 

In view of the growing and applicative nature of FCA in various fields, we 
present its fundamental notions with examples in this article as follows. In section 2, the 
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origin and growth of FCA is discussed. The terms and notions related to FCA are 
presented and illustrated in section 3. Section 4 deals with the scalability issues and the 
current trends on it. At last, we conclude the article in section 5. 

2. Origin and growth of FCA 

The lattice theory based framework namely Formal concept analysis (FCA) has emerged 
as a distinctive tool in the field of knowledge discovery. FCA has found its immense 
growth since its inception in to the field of data analysis and knowledge representation 
few decades ago. FCA is a theory of mathematics means for determining the concepts 
and their hierarchies that underlie in any information system (Wille, 1982). The 
mathematical foundations of FCA were first laid by (Birkhoff, 1948) who first bridged 
the partial orders and lattices. Further he also proved that any binary relation between a 
set of objects and a set of attributes can be depicted by means of a unique lattice which 
provides an insight into the structure of the original relation. FCA has emerged as a result 
of the attempts of a group of researchers to develop the applications of lattice theory at 
Darmstadt University of Technology in Germany. The research group was led by the 
Professor Rudolf Wille, who became the founder of FCA by publishing his first article on 
FCA in 1982 (Wille, 1982) in which he discussed about the approach of restructuring 
lattices using hierarchies of concepts. 

FCA is a mathematical framework of data analysis which discovers conceptual 
structures among data structures. The main use of FCA is to analyse the data. In other 
words, FCA is used to investigate and process any data explicitly to obtain meaningful 
information. FCA has found several applications since its inception. Details of these 
applications are available in the literature (Carpineto & Romano, 2004; Priss, 2006). The 
major areas of its applications are (Wille, 1992; Ganter & Wille, 1999): Knowledge 
Extraction, Information Restructuring and Classification, Data Mining (Kumar & 
Sumangali, 2012; Sumangali & Kumar, 2013), Data Visualization, Decision Making. 
FCA is also used in numerous fields involving the above tasks. Some of the fields 
wherein FCA has been used are: psychology (Spangenberg, 1999; Spangenberg & Wolff, 
1991; Duquenne, 1999; Duquenne, Chabert, Cherfouh, Delabar, Doyen, & Pickering, 
2003), biological and social sciences (Duquenne, 1999; Ganter & Wille, 1989), civil 
engineering (Kollewe, Skorsky, Vogt, & Wille, 1994), experimental design (Duquenne, 
1999), information retrieval (Godin, Missaoui, & April, 1993; Carpineto & Romano, 
2000; Cole, 2000; Rock & Wille, 2000), memory modeling (Kumar, Ishwarya, & Loo, 
2015) and software engineering (Codocedo, Taramasco, & Astudillo, 2011). The 
researchers have enriched the notions of descriptive logics and FCA to understand the 
images (Atif, Hudelot, & Bloch, 2014). The human expert knowledge is linked through 
different combinations such as descriptive logics, FCA, and mathematical morphology. 
Poelmans, Ignatov, Kuznetsov, and Dedene (2013; 2014) have presented a different 
strategy on the applications of FCA. 

The mathematical theory of FCA has been extended into various frontiers and 
included with other knowledge representation schemes. Recently Singh, Kumar, and 
Gani (2016) provided necessary mathematical background for few extensions of FCA for 
various environments such as FCA with granular computing (rough set theory), fuzzy set 
theory, interval-valued set theory, possibility theory, triadic concepts, factor concepts and 
handling incomplete data. Yao (2016) interpreted the notion of rough set (RS) definable 
concepts and thereafter derived the Boolean algebra for RS- definable concepts. RS-
definable concept is a pair of extension and intension, with extension being a set of 
objects and the intension being a family of sets of attribute-value pairs. 
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3. Terms and notations in FCA 

FCA is an art of describing the world in terms of the objects and attributes possessed by 
those objects. In FCA the adjective ‘formal’ is often used to emphasise the 
mathematisation of the notions used from those of the human mind. The terms and 
notions used in this article are on the basis of the text book of Ganter and Wille (1999) 
and also consistent with the notions dealt by Davey and Priestly (2002). 

FCA is the theory of formalisation of the idea concept. The notion of concept has 
been already suggested from ancient times by the eminent philosophers such as Plato, 
Francis Bacon and John Stuart Mill in order to characterize formal logic systems. The 
notion of a concept from a context was first studied in (Arnauld & Nicole, 1981) and the 
term has been recognized in the German standard (DIN 2330, 1993). The philosophical 
thought of the notion ‘concept’ can be described by its extension – that is the set of all 
objects belonging to the concept and its intension – the set of all attributes possessed by 
those objects in common. 

For example, consider the object-attribute relation: ‘All living beings need water 
to live.’ This relation obviously forms a concept since it has an extent and the 
corresponding intent. The extent is the set of objects of all living beings including 
mankind, animals, birds, etc., and the intent is the attribute ‘water’. The relationship 
covering the set of objects and a set of attributes is often represented by means of a 
formal context which is formally defined as below. 

3.1.  Formal context 

A formal context is a triplet K:=(G, M, I) where G denotes a set of formal objects, M 
denotes a set of attributes and I G M   is the incidence relation between the objects G 

and attributes M. The symbols G and M stand for the German words Gegenstande 
(Objects) and Merkmalle (Attributes) respectively. For any two elements g G  and 

m M , the binary relation ( , )g m I  has to be read as “Object g has the attribute m” 

and is usually written as gIm. 

A formal context is often represented using a cross-table in which rows 
correspond to the set of objects G while the columns correspond to the attributes M. The 
presence/absence of the incidence relation between G and M are denoted by the 
presence/absence of crosses. Such contexts with yes or no attribute values are known as 
binary contexts or one-valued contexts (possible number of attribute values in case of its 
presence). In order to explain the further notions of FCA, its convenient for us to consider 
a small formal context. To this end, we look at the context of Wolff (1994) on animals 
and their characteristics shown in Table 1. 

In this example, the object set G consists of the animals– Lion, Finch, Eagle, Hare 
and Ostrich while the attribute set M includes the characteristics– preying, flying, bird 
and mammal. The symbol   at the intersection of an object row and attribute column 
points out that the object possesses that attribute. For example, the animal Lion has the 
attributes preying and mammal in the given context K. 

The terms context, formal context and cross-table are synonymous and henceforth 
are used interchangeably throughout the article. Furthermore, since we only deal with the 
mathematisation of the notions context and concept throughout the article, we don’t 
emphasise the use of the prefix ‘formal’ with them. Before formally defining a formal 
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concept in a context, we first need to know about the concept-forming operators or ↑ 
(up), ↓ (down)/up-down operators on any given context K. 

Table 1 
Formal context of animals 

Animals Preying Flying Bird Mammal 

Lion X     X 

Finch   X X   

Eagle X X X   

Hare       X 

Ostrich     X   

 

For any subset of objects A G , the up operator A 
 is the set of common 

attributes of A. Symbolically, : { | ( , ) , }A m M g m I g A      . Similarly, for any 

subset of attributes B M , the down operator B 
 is the set of common objects 

belonging to B. Symbolically, : { | ( , ) , }B g G g m I m B      . 

For example, in the given cross-table shown in Table 1: 

➢ { } : { , }Lion preying mammal   

➢ { , } : { , }Finch Eagle flying bird   

➢ { } : { , }mammal Lion Hare   

➢ { , } : { }mammal preying Lion   

➢ { , } : {}bird mammal    

Clearly, every context induces the concept-forming operators. We notice that the 
operator ↑ assigns the subsets of G to subsets of M and dually the operator ↓ assigns the 

subsets of M to subsets of G. For brevity, the concept-forming (up-down) operators A 
 

and B 
are denoted as A and B  . 

3.2.  Formal concepts 

We next define the notion of a formal concept (Ganter & Wille, 1999). The formal 
concepts are the clusters of the given context formed as a result of attribute sharing. More 
formally, For any given context K:=(G, M, I), a formal concept is a duple (A, B) where 

A G  and B M such that A B   and B A  . Plainly, in a given context, if A is a 

maximal set of objects sharing a maximal set of attributes B then the ordered duple (A, B) 
is called as a formal concept. The sets A and B are respectively known as the extent and 
the intent of the concept (A, B). The following proposition on extent and intent follows 
directly. 
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Proposition 1 (Ganter & Wille, 1999): 

      Let K:=(G, M, I) be a context. For any subsets A G  and B M the following are 

valid: A A and B B . Consequently, ( , )A A   and ( , )B B   are valid concepts of the 

context K. Further, A is an extent if and only if A A and dually B is an intent if and 

only if B B . Thus, combining the definition and properties of a concept we can tell 

that for any concept (A, B), ( , ) ( , ) ( , )A B A A B B      

3.2.1.  Properties of concepts 

It is noteworthy to mention that a set S is said to be maximal/minimal set with property P 
if there exists no other proper superset/subset of S with property P. Furthermore, S is said 
to be a maximum/minimum set if its cardinality is maximum/minimum among such sets. 

A rectangle in a context K:=(G, M, I) is a duple (A, B) such that the cartesian 

product A B I  . i.e., for every x A and y B , ( , )x y I . For any two rectangles 

1 1A B
 
and 2 2A B  we call 1 1 2 2A B A B  

 
if and only if 1 2A A  and 1 2B B . Any 

formal concept (A, B) can also be viewed as a maximal rectangle in the context. The 
formal concepts remain invariant under the row or column permutations of the cross-table. 

3.2.2.  Computation of concepts 

The formal concepts can be easily computed for any given context K:=(G, M, I). Though 
there may be several techniques to compute the formal concepts, the easiest way is to 
start with an object g G

 
and determine its attribute-set B M , the intent of the 

concept. Next, determine the set of all objects A G  which possess all the attributes in 

B (intents) which form the extent of the concept. Thus, the ordered pair (A, B) is the 
required concept. Dual approach of starting with any attribute m M can also be adopted 

in the determination process of concepts. More generally, for any subset of objects or 
attributes of a context the corresponding concept can be determined. 

A concept ({ } ,{ } )g g  obtained by starting with an object g G  is called as an 

object concept denoted by ( )g . Dually, a concept ({ } ,{ } )m m   obtained with the start 

of an attribute m M  is called as an attribute concept denoted by ( )m . Clearly, not all 

concepts of a context are object or attribute concepts. Any concept may be either object 
concept or attribute concept or both or neither. 

We shall illustrate the above concept determination process through the context 
given in cross-table (Wolff, 1994). Let us start with the object Lion, its intent set is B = 
{preying, mammal}. The extent set corresponding to B is A = {Lion} only. So, the pair 
({Lion}, {preying, mammal}) is a concept for the given context. If we start with the 
objects Finch, Ostrich we obtain the intent set B = {bird} whose extent set is A = {Finch, 
Eagle, Ostrich}. So, the ordered pair ({Finch, Eagle, Ostrich}, {bird}) is another concept 
in the given context. Exploration of the given context further yields the following 8 
concepts. 

1. ({}, {preying, flying, bird, mammal}) 
2. ({Lion}, {preying, mammal}) 
3. ({Eagle}, {preying, flying, bird}) 
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4. ({Lion, Hare}, {mammal}) 
5. ({Lion, Eagle}, {preying}) 
6. ({Finch, Eagle}, {flying, bird}) 
7. ({Finch, Eagle, Ostrich}, {bird}) 
8. ({Lion, Finch, Eagle, Hare, Ostrich}, { }) 

In this example, concepts 2, 3, 4, 6, 7 are object concepts and concepts 4, 5, 6, 7 
are attribute concepts. One can easily note that only certain and not all of the subsets of 
objects have formed as extents of some concepts and the case of intents also similar, 
though up-down operation exists for any such subsets. For any given subset of 
objects/attributes the resulting concept is always unique. Moreover, if the extent A of any 
concept (A, B) is known then its intent B can be uniquely determined and vice versa. 

There are several algorithms to generate the formal concepts in a context. Some of 
the famous algorithms serving this purpose are: Ganter, Bordat, Next neighbours, etc. 
Kumar and Singh (2014) have studied the performance of various concept generation 
algorithms. 

3.2.3.  Hierarchy of concepts 

In order to discuss about the properties of the set of all concepts we require to know the 
fundamental notions associated with the lattices from set theory, a branch of 
mathematics. We refer the readers to Davey and Priestly’s Lattices and Order (Davey & 
Priestley, 2002) for an introductory knowledge on lattices and to George Gratzer's 
General Lattice Theory (Gratzer, 2003) for an encyclopaedic knowledge on lattices. In 
order to make the article self-content we recall some of the basics of lattice theory. 

Let P be any set in which any two elements ,x y
 
are related using some relation R 

denoted as xRy . Then P is said to be a partially ordered set or simply a poset if the 

following properties hold: 

i. Reflexivity : For any element x P , xRx . 

ii. Anti-symmetry    : If ,x y P such that xRy and yRx , then x y . 

iii. Transitivity : If , ,x y z P such that xRy and yRz , then xRz . 

The relation R by which a set P is a partially ordered set resembles the usual 
relation of   (less than or equal to) in view of the above stated three properties. Hence, 

conventionally, the symbol R is replaced by the symbol  . A set P with a partial order   

is denoted by ( , )P  . 

Let ( , )P  be a partially ordered set and let S be its subset ( S P ). An upper 

bound of S is an element x S  such that s x for all s S . Dually, a lower bound of S 

is an element y S such that y s for all s S . A smallest element amongst the set of 

all upper bounds of S is called the supremum or least upper bound of S and is denoted 

by S . Dually, the greatest element amongst the lower bounds of S is called the infimum 

or greatest lower bound of S and is denoted by S . If { , }S x y , we write simply 

x y instead of S and x y  instead of S . The terms supremum and infimum are also 

referred to as join and meet respectively. 

  Consider a partially ordered set ( , )P  . 
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➢ If for any two elements ,x y P , x y  and x y  exist, then ( , )P   is called a 

lattice. 

➢ If for any subset S P , S and S exist, then ( , )P   is called a complete lattice.  

Turning back to the discussion of concepts of a context, any two concepts 

1 1( , )A B  and 2 2( , )A B  of a context can be ordered/related by means of the subconcept-

superconcept ordering relation  , which is defined as follows: 

1 1 2 2( , ) ( , )A B A B if and only if 1 2A A which otherwise also means that 2 1B B .  

The ordering relation   between concepts can be identified to be a partial order. 
In other words, the relation   satisfies the three properties of set theory viz., reflexivity, 

anti-symmetricity and transitivity. The partial order   between the elements of a poset is 
also known as the hierarchical order or lexicographical order. The definition of the object 
and attribute concepts achieves the following straight forward result. 

Proposition 2 (Davey & Priestley, 2002; Lambrechts, 2012):  

      If (A, B) is a concept of a context K:=(G, M, I), then g A  if and only if 

( ) ( , )g A B  and dually, m B  if and only if ( ) ( , )m A B  . Furthermore, gIm if and 

only if ( ) ( )g m  . 

3.3.  Concept lattices 

If 1 1 2 2( , ) ( , )A B A B , the concept 1 1( , )A B  is called as subconcept/child/successor 

concept and the concept 2 2( , )A B  is called as super/parent/predecessor concept. 

Moreover, the concept 1 1( , )A B  is said to be more specific than the concept 2 2( , )A B  or 

equivalently the concept 2 2( , )A B  is more general than the concept 1 1( , )A B . 

Let B(K) be the set of all concepts of a context K:= (G, M, I). Then, (B(K), ) is a 
partially ordered set. Moreover, for any subset of concepts in B(K), there always exists 

supremum as well as infimum and hence the poset (B(K),  ) forms a complete lattice. 

The complete lattice (B(K),  ) is often known as a concept lattice for obvious reason. 

The symbol B for concept lattices is attributed to the mathematician Birkhoff who 
initiated the theory of formal concept by proving the existence of lattices for binary 
relations of any context in his Lattice Theory (Birkhoff, 1948). A detailed study about 
concept lattices and their theoretical aspects can be found from (Sarmah, Hazarika, & 
Sinha, 2015). 

The one of the main reasons for considering FCA as a powerful method in the 
analysis of data is due to the fact that it has the added feature of graphical visualisation of 
the context which explores the underlying implicit relationships in the given context. 

3.3.1.  Graphical representation of concept lattices 

Any lattice can be graphically viewed using Hasse (line) diagrams (Davey & Priestley, 
2002) and so also the concept lattices. The Hasse diagram of a lattice can be easily drawn 
as follows. 
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Represent the elements of a lattice ( , )P 
 
by means of nodes/circles. Let ,x y P  

be any two elements. Then join the nodes corresponding to the elements ,x y P
 
if and 

only if x y  and there exists no other element z P such that x z y  . Or simply, if 

,x y P
 
are the immediate predecessor and successor (sub-concept and super-concept) 

respectively, then join their nodes by a line. Another convention adopted in the drawing 
of Hasse diagrams is that if ,x y P such that x y , then the node corresponding to x is 

placed below that of y. It is interesting to note that the Hasse diagrams of a lattice need 
not be unique in the sense that there can be different drawings for the same lattice, since 
nodes can be placed as desired. However, any two Hasse diagrams of a lattice are always 
isomorphic graphs. Isomorphic graphs are the different drawings of the same graph. 
Having understood the Hasse diagrams of lattices, let us now illustrate the graphical 
representation of the concept lattices. 

Hasse diagrams endow us to view every concept lattice graphically easily than 
any other representation scheme. The only part that remains for us to know is the 
labelling of the concepts in a concept lattice. Obviously, every concept in a concept 
lattice is attributed to a node/circle in a Hasse diagram. Labelling each concept over the 
nodes would be overkill. As an alternative method, ‘Reduced Labelling’ scheme is 
available to this end by which the concepts of a concept lattice are labelled as follows: 

• A node corresponding to an object concept ( )g is labelled by the object g G . 

• A node corresponding to an attribute concept ( )m  is labelled by the 

attribute m M . 

• Object labels are written below the nodes while attribute labels above the nodes. 

The remaining concepts can be retrieved using the proposition 2 stated earlier by 
understanding their extents and intents properly. In a concept lattice, one can determine 
the extent of a concept node by collecting all the object labels of the nodes that can be 
reached starting from the corresponding concept node by descending/downward path 
including the object label of the starting node if it has one. Similarly, starting from a 
concept node, the collection of attribute labels of the nodes which can be reached by 
ascending/upward path including the attribute label of the starting node if it is an attribute 
concept node yields the intent of the starting concept node. 

Since any lattice diagram is always Hasse diagram only, we need not emphasise 
the term ‘Hasse’ and henceforth we omit it from the discussion. As we move through the 
nodes of a concept lattice from the bottom/top to the top/bottom, we find that the object 
set increasing/decreasing and attribute set decreasing/increasing respectively. Thus, the 
predecessor concepts inherit the objects from their successors while the successors inherit 
the attributes from their predecessors. Briefly, as we traverse from bottom to top we 
achieve more general concepts and the reverse traversal achieves more specific concepts. 
The top most concept which consists of all the objects is called as the unit concept and 
dually the bottom most concept consisting of all attributes is called as the empty concept. 
The set of concepts lying on the downward path is known as the down-set or order ideal 
and dually that on the upward path is known as the up-set or order filter.

 
The concept 

lattice reflects the relationship of generalization and specialization among concepts. It 
thereby is more intuitional and effective for knowledge representation and knowledge 
discovery. 

Using the principles of the partial order of concepts and Hasse diagram we are 
now able to draw the concept lattice of the context given in Table 1 as shown in Fig. 1. 
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Fig. 1. Concept lattice for the formal context of Table 1 

The given context Table 1 as explained earlier has eight concepts; each of them is 
represented by means of a node in the concept lattice. Any two immediate predecessors / 
successors are joined directly which on the whole yields the concept lattice as desired. 
The concepts corresponding to the nodes can be identified as interpreted earlier the 
example the node with object label FINCH corresponds to the 6th concept ({Finch, 
Eagle}, {flying, bird}). [Recall that extent is the collection of objects from downward 
paths while the intent is that of attributes from upward paths]. 

3.4.  Many valued contexts and their scaling processes 

Having understood the fundamental notions of FCA, we will now try to explain the FCA 
structures for varieties of information contexts. In general, FCA is not compatible with all 
types of information contexts. In such circumstances, the information context is modified 
using appropriate principles so that it becomes compatible to be processed by FCA. 

Usually, attributes are considered to be one-valued viz., ‘yes’. But in several 
contexts, attributes are identified with many values. For example, the attributes such as 
weight, colour, grade, etc., may be characterized as low, medium, high, etc. Such 
contexts are known as many-valued contexts. In such cases, the usual context 
representation scheme is not suitable for the analysis using FCA and the context is 
modified to a one-valued context using methods of ‘conceptual scaling’ (Ganter & Wille, 
1989; Davey & Priestley, 2002). The modified one-valued context is known as the 
derived context. 

In the process of scaling, a many-valued context is first transformed into a one-
valued context or binary context using conceptual scaling techniques. However, this 
transformation process is accomplished by the users. Hence, the conceptual scaling of a 
many-valued (MV) context is not determined uniquely. 

Literature lists several research articles centered on MV contexts. Messai, 
Devignes, Napoli, and Smaïl-Tabbone (2008) have studied MV contexts for the first time. 
They observed that MV contexts yield multi-level concept lattices of have higher 
precision levels. In the retrieval process of valid information from complex queries, use 
of MV context methods brings out fruitful results. Before we proceed, let us formally 
define a MV context. 

A many-valued (MV) context ( , , , )G M W I comprises of sets of objects G, 

attributes M, attribute values W together with a ternary relation I between G and M, W. 
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Stated otherwise, I G M W    such that ( , , )g m w I  and ( , , )g m v I  imply w v . 

The notation ( , , )g m w I , means that ‘for the object g, the attribute m possesses the 

value w’. If W contains n elements, then the quadruple ( , , , )G M W I  is called an n -valued 

context. Every MV attribute is a partial map :m G W such that ( )m g w . For any 

attribute m, its domain is defined as ( ) { | ( ) }dom m g G m g w for some w W    . If 

dom(m) = G, then the attribute m is said to be complete. 

Concept lattices cannot be determined instantly for many valued contexts. In this 
case, one has to convert it into a binary valued context which is termed as conceptual 
scaling according to (Ganter & Wille, 1989). Such a modified context is known as the 
derived context. Normally, a conceptual scale is employed on a single attribute m, and in 
this case the scale forms a basis for the formal context. The standard scaling method 

namely plain scaling creates from a scaled MV context (( , , , ), ( ))mG M W I S m M , 

which is an ordered pair that consists a many valued context ( , , , )G M W I , and a set of 

scales ( )mS m M , the derived context namely  : ( , ( , ) , , )mK G m n m M n M J   , 

where ( , ) ( ) , ,m mgJ m n iff m g I n where g G m M n M   .  

We will now require an example of a MV context to interpret the forthcoming 
notions clearly. Let us consider a simple context of platonian bodies given by (Hitzler & 
Scharfe, 2016) shown in Table 2. 

Table 2 
Many-valued context of platonian bodies 

 Corners Edges Facets 

Tetrahedron 4 6 4 

Hexahedron 8 12 6 

Octahedron 6 12 8 

Dodecahedron 20 30 12 

Isocahedron 12 30 20 

 

3.4.1.  Conceptual scaling 

We will now discuss about the process of conceptual scaling. Every attribute of a MV 
context is first interpreted using a context. This context is known as conceptual scale. 
Theoretically, a scale for an attribute can be defined as follows. 

The ‘scale’ of an attribute m in a many-valued context is a one-valued context 

: ( , , )m m m mS G M I where mG G . The objects and attributes in a scale are respectively 

known as scale values and scale attributes. A scale for an attribute is a context which 
serves in the process of transformation of a many-valued context into a binary context. 
For example, in the given example of platonian bodies we can classify the attribute facets 
into simple, medium and complex using the following scale shown in Table 3. 
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Table 3 
One-valued context for attribute facets 

:faceS   Simple Medium Complex 

10 facets X   

10 facets and 15 facets  X  

15 facets   X 

 

Conceptual scales interpret the columns of a MV context. Conventionally, the 
contexts which are binary and are clear in structure are called as scales, even though 
every context can be regarded as a scale. The simplest of all conceptual scales are the 
nominal scales in which every attribute is subdivided by each of its values. Using the 
nominal scale in the context given in Table 2, the attributes corners, edges and facets are 
respectively subdivided into 5, 3 and 5 columns in the derived context. The derived 
context out of the nominal scale is shown in Table 4 which is followed by its concept 
lattice Fig. 2. 

Table 4 
Formal context derived from Table 2 by nominal scaling 

 Corners  Edges Facets 

 <=4 <=6 <=8 <=12 <=20 <=6 <=12 <=30 <=4 <=6 <=8 <=12 <=20 

Tetrahedron X     X   X     

Hexahedron   X    X   X    

Octahedron  X     X    X   

Dodecahedron     X   X    X  

Isocahedron    X    X     X 

 

The other class of conceptual scales is the ordinal scales and its variety is several. 
To mention few, we will glance at some basic ordinal scales viz., one-dimensional 
ordinal scale, inter ordinal scale, biordinal scale and dichotomic scale. 

In a one-dimensional ordinal scale, the attribute values of every attribute are 
ordered such that some attribute values subsume other values because the former attribute 
values are greater or lesser than those of later ones. As a result, the extents form a chain 
of hierarchy. For example, the attribute values may be arranged in the order {good, better, 
best}. The following Table 5 is an example of one-dimensional ordinal scaling in the 
example context under consideration in Table 2 which is followed by its concept lattice in 
Fig. 3. 
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Fig. 2. Concept lattice for the formal context of Table 4 

Table 5 
Formal context derived from Table 2 by ordinal scaling 

 Corners  Edges Facets 

 <=4 <=6 <=8 <=12 <=20 <=6 <=12 <=30 <=4 <=6 <=8 <=12 <=20 

Tetrahedron X X X X X X X X X X X X X 

Hexahedron   X X X  X X  X X X X 

Octahedron  X X X X  X X   X X X 

Dodecahedron     X   X    X X 

Isocahedron    X X   X     X 

 

 

Fig. 3. Concept lattice for the formal context of Table 5 
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‘Interordinal scales’ are used in the representation of contexts of mixed attribute 
values. For example, the contexts such as the answers of a questionnaire contain bipolar 
attributes which are mixed, and it can be efficiently scaled using interordinal scales. For 
instance the attribute values { 1 , 2, 3  , 1 , 2 , 3 } yield extents which fall on 

the attribute interval values. Another example for application of biordinal scales can be in 
a marking scheme having values {poor, middle class, rich, very rich}, in which the 
attribute ‘rich’ can belong to both attributes ‘middle class’ and ‘very rich’. 

The ‘dichotomic scale’ context of binary attributes contain the values of the kind 
{yes, no} shown in the following Table 6. 

Table 6 
Dichotomic scale context 

 0 1 

0 X  

1  X 

 

Readers may refer to (Ganter & Wille, 1999; Hitzler & Scharfe, 2016; Carpineto 
& Romano, 2004) to know the various scaling techniques in detail. 

Having understood various real-life contexts and their scales, one may now be 
able to construct concept lattices for any given context. Apart from the benefit of 
understanding the contexts by concepts and their graphical view of line diagrams FCA 
also empowers the users to explore the hidden rule patterns present in the formal context 
and we present some fundamental aspects of the same subsequently. 

3.5.  Attribute implications 

The quest of understanding dependencies between attributes leads to the study of attribute 
exploration in contexts. The attribute logic is the underlying rules between the sets of 
attributes in a context. Attribute implications portray the data dependencies. For example, 
the following are some attribute implications. 

• Every number divisible by 2 and 5 is also divisible by 10.  

• Every patient with symptoms head ache and fever also gets vomiting symptom. 

From the attribute hierarchy of concept lattices, we infer that in any intent, the 
attributes always occur along with those above them. This mathematical property of 
lattices paves the way to another broad area of knowledge discovery in FCA viz., 
‘Attribute Exploration’. Let us explore some of its associated basics. 

According to mathematical logic, an implication X Y  is a logical statement 

that relates a set of formulas X with another set of formulas Y such that Y is a logical 
consequence of X. The implication X Y literally means, ‘if X then Y’ and hence can be 

thought of as ‘if-then’ dependencies between attributes. In this angle, the implication 
formulas are also known as ‘functional / attribute dependency (AD) formulas’ or 
association rules. In view this, the study of rules or implications viz., Attribute 
Exploration in FCA is also referred to as ‘association rule mining’. 
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In the treatment of formal contexts, for any two attribute subsets ,X Y M  of a 

context (G, M, I), an implication of the form X Y  means that the set of objects 

possessing all attributes in X also possess all attributes in Y. The attribute sets X, Y are 
respectively are referred to as ‘premise’ /‘antecedent’ and ‘conclusion’ /‘consequent’. 

Some contexts often contain huge set of objects versus relatively small set of 
attributes and hence deriving all the concepts would be overkill. In such cases, the 
concept lattices can be conveniently inferred from attribute logic. Sometimes, attribute 
exploration is the only alternative knowledge discovery technique instead of concept 
exploration to handle several complexities of FCA. For example, a context may be huge 
or even infinite in size. Sometimes, contexts may be with ‘unknown objects’. Therefore, 
it may not be possible to explore the entire set of formal concepts and thereby cannot 
obtain the corresponding concept lattice with full entity. In such cases, the use of AD 
formulas helps us to determine the ‘typical’ set of objects or attributes (with common 
properties) of the context. Some authors have derived the typical set of objects from such 
contexts by the use of ‘domain expert / background knowledge’ (Belohlavek & Vychodil, 
2009; Belohlavek & Macko, 2011; Dias & Vieira, 2010; Burmeister, 2003; Ganter, 1999; 
Groh & Eklund, 1999; Sumangali & Kumar, 2014). We next illustrate the attribute 
exploration in FCA. 

Let us consider the following simple context K=(D60, D60, /) shown in Table 7 
where D60 is the set of divisors of number 60 and / is the relation division. 

Table 7 
Formal context of divisors of number 60 

D60 1 2 3 4 5 6 10 12 15 20 30 60 

1 X 

    

       

2 X X 

   

       

3 X 

 

X 

  

       

4 X X 

 

X 

 

       

5 X 

   

X        

6 X X X 

  

X       

10 X X 

  

X 

 

X      

12 X X X X 

 

X 

 

X     

15 X 

 

X 

 

X 

  

 X    

20 X X 

 

X X 

 

X  

 

X   

30 X X X 

 

X X X  X  X 

 
60 X X X X X X X X X X X X 
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By observing the above context, one can easily infer the existence of the 

implication    1,  2,  3 6 , since all the objects (numbers) having the attributes 

(divisors) ‘ 1,  2,  3 ’ also have the attribute (divisor) ‘ 6 ’. In this case, the converse of 

the implication viz,    6 2,  3 also holds. Note that since the divisor 1 is present with 

all objects it is a redundant attribute and hence can be ignored. Not all the converse 

implications are valid. For example, the converse of the implication   1,  3,  5 15 does 

not hold. Perhaps all the implications of the divisors context presented below are easy to 
understand because of the logical division relation which is familiar to us. But in general, 
it is not always possible to examine the validity of implication formulas directly by 
observing the context. To this end, the following proposition helps us to verify the 
validity of implications. 

Proposition 3 (Lambrechts, 2012): 

      Let ,X Y M  in a context (G, M, I). Then the implication X Y  is valid if and 

only if Y X  . Furthermore, it is directly valid in the set of all intents of the formal 

concepts B(G, M, I). 

In the given context shown in Table 7 consider the possibility of the implication 

   1,  3,  5 15 . 

Let us validate this implication using the above proposition. 

   1,  3,  5 15  

{1,3,5} {15,30, 60} {1,3,5,15} {15}    .  

Hence the above proposition holds good. Similarly, one can verify the validity of 
the following propositions. The use of DG basis (discussed subsequently) yields the 
following set of implications to the divisors context for 60 as shown in Table 8. 

From the perspective of data mining, a formal context (G, M, I) is replaced by (T, 
I, R) whose symbols stand for Transactions (Objects), Itemsets (Attributes), and Relations 
(Incidence Relation) respectively. Any subset of k attributes is called as a ‘k-itemset’. An 
‘intent’ is referred to as a ‘closed itemset’. The detailed discussions on discovery of 
association rules in data mining can be found in (Agrawal, Imielinski, & Swami, 1993; 
Agrawal & Srikant, 1994). The following measures are often used in the mining of 
association rules. 

The support of an itemset X M is defined as, ( )
X

supp X
G


  

An itemset is said to be a frequent itemset if its support is greater than or equal to 
some user specified threshold value. For any implication/ rule, X Y , its degree of 

association is measured using support and confidence measures which are defined as 
follows, 

           Support: ( ) ( )supp X Y supp X Y    
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           Confidence: 
( )

( )
( )

supp X Y

supp X
conf X Y


   

We infer that the support of an implication X Y  is merely a statistical 

significance while confidence is a statistical measure of conditional probability that an 
object contains Y given that it already contains X. An intent which is frequent that is, its 
support exceeds or equal to some user specified value is called as a frequent closed 
itemset. The concept lattices can be pruned using closed itemsets as well (Saquer, 2000). 

Table 8 
Attribute implications derived from a formal context of Table 7 

S.No Implications support 

1 { }  {1} 12 

2 {1, 2, 3} {6} 4 

3 {1, 4} {2} 4 

4 {1, 2, 5} {10} 4 

5 {1, 3, 5} {15} 3 

6 {1, 6} {2, 3} 4 

7 {1, 2, 3, 4, 6} {12} 2 

8 {1, 10} {2,5} 4 

9 {1, 2, 4, 5, 10} {20} 2 

10 {1, 12} {2, 3, 4, 6} 2 

11 {1, 15} {3, 5} 3 

12 {1, 2, 3, 5, 6, 10, 15} {30} 2 

13 {1, 20} {2, 4, 5, 10} 2 

14 {1, 30} {2, 3, 5, 6, 10, 15} 2 

15 {1, 60} {2, 3, 4, 5, 6, 10, 12, 15, 20, 30} 1 

16 {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30} {60} 1 

 

FCA facilitates the discovery of attribute dependencies known as implication 
basis out of which one can derive all other rules. In practice there are two types of basis 
in determining the implications namely Duquenne-Guigues (DG) basis and Luxenburger 
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basis whose confidence levels are 100% and < 100% respectively (Stumme, 2002; Zhang 
& Wu, 2011). Implications obey Armstrong rules namely, 

Reflexivity: ( if Y X then X Y  ),  

Augmentation: ( if X Y then X Z Y Z    ), 

Transitivity: ( ,if X Y Y Z then X Z   ). 

A DG basis is a minimal subset of implications/rules which can derive all 
implications with Armstrong rules. The main advantage of DG base of attribute 
implications is that, it produces a minimal possible number of implications among all 
other bases of implications, which hold in context. In our article, we treat with the 
implications derived out of DG basis. 

Though the determination of all the implications of a context may seem to be an 
easy task, it is not so in general due to huge size of the context and sometimes 
implications also. To this end, for any formal context, its concept lattice and the set of 
implications can be produced by the use of software tools. One such software tool 
developed by Dr. Serhiy Yevtushenko is given in (Yevtushenko, 2000). 

In the next section we discuss about the scalability issues in FCA and briefly 
review some of the articles with this interest. 

4. Scalability issue in FCA and its improvements 

Though, FCA is considered as an important formalism to represent, extract and analyse 
any information system, it faces few problems which are to be addressed. Contexts are in 
general huge, complicated and contain much redundant knowledge. So, a main problem 
identified in practical applications of FCA is that the computational cost in processing the 
information system with FCA is high and the visualisation of lattice structure is difficult 
to perceive. This complexity issue arises due to the scalability of FCA. 

The number of formal concepts grows exponentially to the size of the context and 
it is found to be computationally #P-complete (Kuznetsov, 2001). In addition, the number 
of implications grows exponentially, as attribute size increases in formal contexts and it is 
computationally #P-hard (Kuznetsov, 2004). In ICFCA 2006 (International Conference 
on FCA) handling large context was discussed as an open problem. After this conference 
several researchers concentrated on the scalability issues in FCA. 

Literature, describes variety of approaches to control the complexity and size of 
contexts, concepts, concept lattices and rules. Popular research methods for improving 
scalability of FCA often involve: conceptual scaling for many-valued contexts, matrix 
decompositions, iceberg concept lattices, clustering approach, computing granular 
concepts, concept similarity indices, objective functions, attribute reduction, other 
filtration strategies, etc. 

Recently, Dias and Vieira (2015) have classified concept lattice reduction 
techniques into three classes. In the first class of reduction techniques the redundant 
information is removed from the context and thereby a minimal concept lattice is 
obtained. This class of techniques is useful when the context has much redundant 
knowledge. The second class of reduction methods is the simplification of 
contexts/concept lattices. This class of techniques is useful to identify very important 
aspects in a context/concept lattices. Finally, third class of reduction techniques is the 
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selection of formal concepts, objects/attributes. When the context possesses some 
standard applicable principles this class of reduction techniques is more useful to obtain 
meaningful information. 

We next summarize some of the improvements in literature on the scalability 
issues under the stated three categories in Table 9 as shown below and describe the 
contribution of each work briefly. 

Table 9 
Some important contributions on FCA scalability issues 

Paper Redundant Information Removal/Context Pre-processing 

Ganter & Wille 
(1999) 

Authors obtained the clarified context by removing reducible 
objects and attributes, and the resulting concept lattice preserves 
the isomorphism with the original one.  

Wu, Leung, & Mi 
(2009) 

Granular structure of concept lattices with application in 
knowledge reduction in formal concept analysis is examined in 
this paper. Information granules and their properties in a formal 
context are first discussed. Concepts of a granular consistent set 
and a granular reducts in the formal context are then introduced. 

Wei & Qi (2010) The relation between the reduction methods using concept lattices 
and rough sets was discussed based on classical formal context. 
The method unravels the relation research between these two 
theories. 

Pei & Mi (2011) Authors have reduced the attributes in a decision formal context 
based on a homomorphism consistent set from the concept lattice. 

Medina (2012)  Attribute reduction in the three frameworks namely formal, object-
oriented, and property-oriented concept lattices were studied in 
this article. Irrespective of the frameworks, it has been found that 
the attributes can be classified into three levels of necessity and in 
any level the attribute reducts are identical. 

Li, Mei, Kumar, & 
Zhang (2013) 

The author has proposed a framework for knowledge reduction 
from decision formal context using the idea of rule acquisition to 
discover a new set of non-redundant decision rules.  

Li, Mei, & Lv 
(2013) 

This article concentrates some of the issues in incomplete decision 
contexts such as approximate concept construction, rule 
acquisition and knowledge reduction. A method is proposed to 
build an approximate concept lattice with an incomplete context. 
The notion of an approximate decision rule is defined, and a 
method is developed to extract non-redundant approximate 
decision rules from an incomplete decision context. These rules are 
again reduced by constructing a discernibility matrix and its 
associated Boolean function.  

Li & Wang (2016) This paper deals with knowledge discovery in incomplete contexts. 
It concentrates on two issues namely concept determination with 
three-way decisions and attribute reduction with incomplete 
contexts. The notions of acceptance, rejections and non-
commitment are used in the formulation of 3-way decisions. 
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Xu & Li (2016) The important task of granular computing (GrC) is to represent, 
construct, and process information granules. The authors propose a 
novel GrC method using FCA description of information granules. 
This method organizes arbitrary fuzzy information granules to 
become necessary and sufficient fuzzy information granules. The 
method is presented along with an algorithm. 

Qian, Wei, & Qi 
(2017) 

In this paper, a three-way concept lattice of a given formal context 
is proposed. Type-I and Type-II combinatorial contexts are 
constructed with original and complementary formal contexts. 
From these two contexts, three-way concepts are constructed by 
two-way operators. And then the relationships between three-way 
concept lattices and classical concept lattices are achieved.  

Cornejo, Medina, 
& Ramirez-Poussa 
(2017) 

Two important research topics in FCA viz., Attribute reduction 
and size reduction in concept lattices were handled in this article. 
Particularly the authors present a procedure which simultaneously 
reduces the attributes and concept lattice size through irreducible 
α-cut concept lattice. 

Li, Kumar, Mei, & 
Wang (2017) 

Recently authors have studied a comparison of reduction in formal 
decision contexts. 

Paper Concept Lattice Simplification/Modification of Closure 
Operators 

Belohlávek & 
Sklenar (2005) 

Various levels of granularity (scales) are set on the attributes. The 
granularity of an attribute increases with multi-valued attributes. 
Increasing or decreasing an attribute’s level of granularity can 
adjust its importance.  

Snásel, 
Polovincak, 
Abdulla, & Horak 
(2008) 

Authors have studied the behaviour of concept lattices which are 
reduced using SVD matrix and NMF decomposition techniques. 
They also have focused on rule reduction after the context 
compression. 

Dias & Vieira 
(2010) 

Junction based on objects similarity (JBOS) uses the background 
knowledge in order to replace similar objects by representative 
elements using certain degree of similarity. 

Kumar & Srinivas 
(2010) 

 

 

Kumar (2012) 

Reduced the size of the concept lattices using fuzzy k–means 
clustering (FKM). Context matrix is reduced, and quotient lattices 
are obtained using equivalence relations derived by means of FKM 
Clustering. In which each record can belong to more than one 
cluster, and a set of membership levels is associated with each 
element. 

The same technique has been adopted in association rule mining of 
concept lattices in (Kumar, 2012) from the healthcare item set. 

Kauer & Krupka 
(2014) 

The reduction of incidence relations from the formal context also 
controls the complexity of the concept lattice.  

Kumar, Dias, & 
Vieira (2015) 

Compressed the original context based on non-negative matrix 
factorization (NMF). Context matrix is decomposed using NMF 
and formal context is obtained using threshold value. The non-
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negative constraint suits the context better as attributes values are 
always non-negative NMF permits only additive combinations but 
not subtractive combinations of the original vectors.  

Li, Shao, & Wu 
(2017) 

The authors introduced the three-way decision theory viz., 
acceptance, rejection, non-commitment in FCA recently. An 
axiomatic approach is proposed to generalize the three-way 
concepts learning through granular computing.  

Li, Huang, Qi, 
Qian, & Liu 
(2017) 

Fuzzy formal contexts are reduced using attribute reduction on the 
basis of their characteristics. The notion of ‘one-sided fuzzy 
concept’ is introduced. The attributes are classified according to 
three characteristics viz., core attributes, relatively necessary 
attributes and unnecessary attributes. Attribute reduction method is 
presented by virtue of attribute characteristics.  

 

Singh, Kumar, & 
Li (2016) 

 

 

Singh & Kumar 
(2014) 

The authors have studied concept lattices under fuzzy 
environments. They analysed the fuzziness in a many-valued 
context which is transformed into a fuzzy formal contexts and 
fuzzy formal concepts.  

They have reduced the number of fuzzy formal concepts by 
simplifying the corresponding fuzzy concept lattice structure. An 
algorithm is also presented for the method.  

They also have introduced the notion of bipolar fuzzy setting in 
FCA. They have devised a method for investigating the bipolar 
fuzzy formal concepts. They also produced lattice representation 
using bipolar fuzzy graph. 

Paper Selection/Concept filtration 

Stumme (2002) Large databases can be analysed using iceberg lattices introduced 
by Stumme (2002) which uses the variant ‘support’. The main 
drawback of this approach is that the iceberg concept lattice only 
denotes the most upper part of the concept lattice. As such, it may 
not be an extraction of all the concepts of the large context.  

Belohlávek, 
Sklenar, & Zacpal 
(2004) 

Authors proposed a method that reduces the number of concepts 
using certain constraints, which are derived from attribute 
dependency formulas (ADF) that are additionally inputted along 
with the formal context. The set of concepts, which are compatible 
with the given set of ADFs, are reduced as important concepts.  

Pernelle, Rousset, 
Soldano, & Ventos 
(2002) 
 

 

 

Soldano, Ventos, 
Champesme, & 

Similar to iceberg concept lattices, another type of lattices viz., 
alpha concept lattices were introduced by the authors. 

Some class restraints are constructed in a formal context with 
attributes. The resulting concept lattice is known as alpha concept 
lattice by Pernelle et al. (2002). An unrestricted lattice results in an 
iceberg concept lattice, i.e. one having only frequent formal 
concepts.  

Soldano et al. (2010) have discussed the construction of alpha 
lattices. The extent of a term in Alpha lattices is restricted 
according to constraints based on an apriori categorization of 
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Forge (2010) instances in classes, and on a degree α, which results in a smaller 
lattice. 

Belohlavek & 
Vychodil (2009) 

Authors determine the Attribute dependency (AD) formulas from 
the background knowledge. Those concepts which do not obey 
these AD formulas are removed. 

Cheung & Vogel 
(2005) 

Codocedo, 
Taramasco, & 
Astudillo (2011)  

Dias & Vieira 
(2010)  

Authors reduced the dimensionality of the concept lattice using the 
equivalence classes of objects in the process of information 
retrieval in which the matrix reduction technique was adopted.  

In these works, the selection of formal concepts is based on the 
notion of distance or similarity. The concepts of equivalence 
classes and similarity of objects or attributes are used in the 
process of selecting important concepts. 

Belohlavek & 
Macko (2011) 

In this article, a weight is assigned to each attribute to express its 
relevance, and then selects formal concepts considered relevant. 
To facilitate the application of weights, assign equal weights are 
assigned to attributes derived from multivalued attributes. The 
importance of a formal concept is measured by the sum of the 
weights of its attributes intention divided by the cardinality of its 
intention. 

Li, Li, & He 
(2014) 

 

Compressed a concept lattice arising from incomplete contexts 
using k-medoids clustering. In this process, Accuracy and 
similarity measures of approximate concepts are obtained and then 
K-medoids clustering is performed and concept lattice is 
compressed.  

Singh, Cherukuri, 
& Li (2015) 

Sumangali, 
Kumar, & Li 
(2017) 

Few studies have recently utilized the notion of entropy based 
FCA. Singh et al. (2015) have concentrated on decreasing the 
number of formal concepts in FCA with fuzzy attributes using 
entropy. Further, the number of fuzzy formal concepts is reduced 
at chosen granulation of the entropy based attribute intent weight. 

Singh & Kumar 
(2016) 

Recently, authors have concentrated to reduce a concept lattice 
using different subset of attributes as information granules. 

 

5. Conclusion 

In this paper we have presented an overview on the foundations of FCA and its historical 
growth to fulfil the thirst of the beginner towards FCA. The terms and notions relevant to 
FCA are recalled and illustrated by means of examples. FCA extracts the knowledge 
from any data par excellence in three dimensions viz., conceptual clusters, lattices 
(graphical representation) and association rules. The main advantages of the use of FCA 
are its simplicity, diagrammatical representation, and hierarchical overview of the 
underlying patterns and rules from the formal context. The common issue arising in FCA 
is the scalability owing to huge size contexts. We have reviewed some of the recent 
works on scalability. 
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