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Abstract: The use of learner modelling approaches is critical for providing 

adaptive support in educational computer games, with predictive learner 

modelling being among the key approaches. While adaptive supports have been 

shown to improve the effectiveness of educational games, improperly 

customized support can have negative effects on learning outcomes. To tackle 

these challenges, we present a novel approach, called DeepLM, that considers a 

series of time windows representing both sequences of learners’ actions during 

gameplay and estimation of their current competencies (using stealth assessment) 

to model learners and accordingly predict their future performance. The approach 

employs a variant of deep neural networks to early predict learners’ midterm and 

final scores simultaneously. The results show that using 20-50% of learners’ 

action sequences can early predict their final scores, with a cross-validated 

convolutional neural network (CNN) achieving an area under the curve (AUC) 

and accuracy of 0.879 and 85.3%, respectively. The same model can also achieve 

high accuracy in predicting midterm and final scores at the same time, with an 

AUC and accuracy of 0.848 and 77.9%. Overall, the CNN model outperforms 

recurrent neural network, long short-term memory, and baseline multilayer 

perceptron (MLP) models in predicting learners’ final performance and performs 

better than the baseline MLP model in predicting learners’ midterm and final 

performance using both cross-validation and independent datasets. These 

findings show the potential of the proposed approach in accurately early 

predicting learners’ performance, allowing educators and game designers to 

tailor interventions and support mechanisms that could lead to optimized 

learning outcomes. 

Keywords: Stealth assessment; Predictive learner modelling; Deep neural 
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1. Introduction 

Educational computer games have been shown to have the potential to improve learners’ 

motivation, learning interests, knowledge gain, technology acceptance, etc. (e.g., Bakan et 

al., 2019; Blakely et al., 2009; El Mawas et al., 2020a; Hooshyar et al., 2021a; Ongoro & 

Mwangoka, 2022; Vlachopoulos & Makri, 2017). Because educational computer games 

(hereafter called educational games) can offer effective and engaging learning experiences, 

they have proven to be successful in different subject matters of different fields (e.g., 

Brezovszky et al., 2019; Hooshyar et al., 2021b; Pesare et al., 2016). Recently, there have 

been several research on equipping educational games with adaptivity that provide learners 

with support like offering personalized curricular sequencing, feedback, and hints (e.g., 

Liu et al., 2020; Malva et al., 2020). The cornerstone of delivering such adaptive supports 

is the learner model which sits behind the user interface of learning environments and – 

through analysing data on learner-system interactions – provides a representation of 

learners’ 

 cognitive and non-cognitive characteristics. This model is then used to provide learners 

with an adaptive and optimal learning experience. Based on several research (e.g., Chen & 

Law, 2016; San Pedro et al., 2013), successful employment of adaptive supports requires 

accurate learner modelling and unsuitable adaptive supports can have a negative impact on 

the learning outcome of learners.  

There are several learner modelling approaches when it comes to educational games 

(e.g., Hooshyar 2019a; Yannakakis & Togelius, 2018). For instance, knowledge tracing 

and stealth assessment both use learners’ interaction with educational games to model their 
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knowledge and/or competencies. The stealth assessment approach (which usually employs 

Bayesian networks) considers an evidence-centred design framework and uses learners’ 

data during gameplay to infer their knowledge. While effective, these approaches often 

require a direct mapping between knowledge content and learners’ in-game actions (Kim 

et al., 2016). On the other hand, the knowledge tracing approach mostly uses Markov 

models to model learners’ skill mastery (Anderson et al., 1995). This approach considers 

the probability of guessing/slipping to have a more realistic inference of learner knowledge. 

This allows educators and instructional designers to not only track skill proficiency but 

also gain insights into the factors influencing correct and incorrect responses. Nonetheless, 

such approaches mainly require historical data for parameter learning and may not provide 

an accurate prediction of learners’ knowledge in situations where there are limited 

sequences of learners’ actions.  

Another prospective learner modelling approach is predictive learner modelling 

which uses learners’ in-game data to infer their learner model and accordingly predict their 

future performance (Namoun & Alshanqiti, 2020). This approach does not require explicit 

incorporation of domain knowledge, which can be expensive in terms of human 

involvement. In recent years, there has been an increasing interest in using machine 

learning methods, including deep neural networks, for predictive learner modelling in 

educational games. Various studies, such as those conducted by Akram et al. (2018), 

Emerson et al. (2019), Henderson et al. (2020), Hooshyar et al. (2022), and Min et al. 

(2019), have explored the use of machine learning methods in this area. Among these 

methods, deep neural networks have demonstrated superior performance compared to other 

machine learning techniques for predicting learners’ performance, as demonstrated by 

Hernández-Blanco et al. (2019). 

Several studies have explored the use of deep neural networks and related 

techniques to predict learners’ performance in educational games. For example, Min et al. 

(2019) utilized long short-term memory (LSTM) networks to capture temporal features of 

learners’ gameplay data and predict their post-test performance. Geden et al. (2021) used 

natural language processing on learners’ responses to reflection prompts within the game 

to develop a predictive model based on recurrent neural networks for post-test scores. 

Hooshyar et al. (2022) proposed an approach that integrates domain knowledge with deep 

neural networks to model learners’ knowledge states during gameplay, taking into account 

their task completion success and algorithmic thinking strategies to predict their future 

performance. Another approach, presented by Lee-Cultura et al. (2020), utilizes multi-

modal data to predict learners’ academic performance early in an arithmetic operations 

game. These approaches leverage machine learning methods to automatically map learners’ 

knowledge and actions in games and enable accurate prediction of their future performance. 

Although predictive learner modelling approaches can alleviate challenges 

associated with manually relating learners’ actions to content skills or knowledge, they 

may struggle to differentiate between a highly-scored solution resulting from mastery or 

chance. In educational games, a solution that receives a high score could be the result of a 

random or appropriate strategy, such as parallel thinking. An example of a random strategy 

that could be considered skill non-mastery is when a high-level solution is developed for a 

very simple task, e.g., unpurposefully travelling an empty path over and over. It should be 

considered that some random strategy-based solutions may result in obtaining scores and 

they do not always lead to losing scores. 

To address such a challenge, one promising direction is to enrich predictive learner 

modelling with stealth assessment designed to model learners’ current knowledge and 
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leverage it to early predict learners’ performance. In other words, to consider the sequences 

of learners’ actions as well as the estimation of their current knowledge (derived from 

Bayesian networks; see also Hooshyar et al., 2019b) in building a predictive learner 

modelling. This could leverage the current knowledge level of learners – which can 

logically be among the best indicators of their performance – in predicting their future 

performance. Moreover, coupling the sequence of estimation of learners’ current 

knowledge with their in-game actions can relax the randomness challenge. The reason is 

that these estimations are inferred from carefully designed networks developed by subject 

matter experts linking knowledge content, gameplay strategies, game elements, learners’ 

in-game actions, scores, etc.  

In this study, a novel approach called DeepLM is proposed to predict learners’ 

future performance in an educational game. The DeepLM employs a variant of deep neural 

networks to encode learners’ knowledge states and competencies and differs from existing 

predictive learner modelling approaches in several ways. For instance, it predicts both 

midterm and final scores simultaneously at the early stages of the game by using limited 

sequences of learners’ actions, and it experiments with different deep learning models, 

including convolutional networks and Multilayer perceptron, to find the best-performing 

one. This research contributes to the related works in several ways, including: 

• Introducing a new approach called DeepLM that uses a limited sequence of 

learners’ actions and their estimated competencies to predict both midterm and 

final scores simultaneously at the early stages of an educational game; 

• Comparing the performance of different types of deep neural networks in 

predicting both single-step final scores and multi-step midterm and final scores; 

• Testing the applicability of the validated models on separate datasets; 

• Examining the impact of different lengths of action sequences on the prediction 

accuracy of the various deep neural network models. 

2. Related works 

2.1.  Stealth assessment in educational games 

Engagement plays a key role in learning and therefore good educational games should be 

engaging (Abdul Jabbar & Felicia, 2015; Parsons & Taylor, 2011; Xie et al., 2021). To 

provide and control engagement in educational games, it is vital to reliably measure 

learning during gameplay without disturbance of engagement. This information can later 

be used to support learning. Stealth assessment is one way to implant such reliable 

assessments into educational games (Shute & Kim, 2014; Shute & Ventura, 2013). 

Basically, using trace data of learners’ interaction with educational games, stealth 

assessment infers learners’ current knowledge according to an evidence-centred design 

framework or ECD (Kim et al., 2016; Mislevy et al., 2003). Overall, any assessment’s main 

goal is to gather information that enables the evaluator to make a reliable and valid 

estimation of people’s competencies (including knowledge, skills, abilities, and more). The 

ECD framework comprises computational and conceptual models working together that 

require identifying the assertions regarding competencies of learners, valid evidence of an 

assertation, and tasks or situations that obtain that evidence (Shute et al. 2016). 
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Stealth assessment meets the requirement of the ECD framework as it identifies 

certain learners’ behavior during gameplay that can act as indicators of an assertation 

(evidence) and map them to the competency of learners (Shut & Ventura, 2013). Briefly, 

as learners interact with various tasks during gameplay, they leave a variety of digital traces 

or performance data that is automatically processed to induce learners’ competency level. 

Learners’ estimates of competency level can be used formatively and diagnostically for 

different purposes. Some examples include the adaptive and timely selection of non-player 

characters’ behaviors or game level, and adaptive supports like individualized feedback, 

hints, and learning materials sequences. The dynamic nature of stealth assessment provides 

benefits like continual measurement of competencies of learners, task difficulty adjustment 

according to the performance of learners, and offering ongoing and timely feedback.  

During the past few years, there have been several prototypes for the stealth 

assessment of learners in educational games. For example, Shute et al. (2010) and Shute 

and Kim (2012) proposed stealth assessment approaches based on the Bayesian network 

and investigated their feasibility by embedding them into educational games like Taiga 

Park and World of Goo, respectively. Besides, there are many educational games that 

follow the same line of work to provide adaptive support in educational games. For instance, 

the AutoThinking game is a computer game developed to promote lifelong learners’ 

computational thinking. The game benefits from a Bayesian network decision-making 

algorithm that predicts learners’ current competencies of computational thinking in real 

time and accordingly provides adaptive support in both learning and gameplay (Hooshyar 

et al., 2021a). While such a way of assessment eliminates the need for disrupting learning 

and has shown to be successful in practice, they are usually unable to use limited sequences 

of learners’ actions in order to infer their knowledge in upcoming game tasks and 

accordingly predict their future performance. 

2.2.  Predictive learner modelling in educational games 

Research has demonstrated promising potential for the development of predictive models 

that estimate learners’ competencies and behaviors in educational games (Ha et al., 2012; 

Morshed Fahid et al., 2021; Wang et al., 2017). While both learner modelling and 

predictive learner modelling use currently available learners’ data to infer their knowledge 

and skills, predictive learner modelling focuses on the prediction of learners’ future 

performance rather than current skills and knowledge. Two of the most important learner 

modelling approaches are stealth assessment and knowledge tracing (Liu, 2022; Shute & 

Kim, 2014). As mentioned in the previous section, the stealth assessment approach 

considers an evidence-centred design framework and uses learners’ data during gameplay 

to infer their knowledge, whereas the knowledge tracing approach mostly uses Markov 

models or sequence-based neural networks to model learners’ mastery level of skills or 

knowledge components in adaptive learning systems (Corbett & Anderson, 1994). 

When it comes to predictive learner modelling, in recent years, there has been 

growing literature on the early prediction of learner performance. Most of these works 

employ predictors like pre-test scores, survey data, and demographical data. For instance, 

Olivé et al. (2019) employed learners’ data gathered up to a few days before assignment 

deadlines and accordingly predicted the timeliness of the submissions. In a different 

attempt, sequences of learners’ actions were used by Jiménez et al. (2019) to early predict 

learners’ dropout in a computer science program. 
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Lee-Cultura et al. (2020) developed a method that employs multi-modal data 

including Empatica E4 Wristband and eye tracker for predicting learners’ academic 

performance in an educational game aimed at promoting arithmetic operations. They found 

that an ensemble learner could accurately predict learners’ performance at an early stage. 

Geden et al. (2021) developed a predictive model to estimate learners’ post-test scores in 

educational games, using natural language processing on learners’ responses to in-game 

reflection prompts to enhance the predictive models. Their approach, which employed 

recurrent neural networks, achieved higher accuracy than other representations. Min et al. 

(2019) used LSTM networks to predict learners’ post-test performance following 

interactions with an educational game. Their approach captured the temporal representation 

of learners’ data and mapped learners’ knowledge and actions in games using deep neural 

networks. The study demonstrated that their approach outperformed competitive baseline 

models in terms of early prediction capacity and accuracy. Hooshyar et al. (2022) proposed 

an approach that integrates domain knowledge with deep neural networks to model learners’ 

knowledge states during gameplay. Their approach successfully predicted learners’ 

performance early during gameplay using deep neural networks. Despite the success, 

Hooshyar et al. (2022)’s work face some challenges, such as: (1) merely utilizing learners’ 

sequences of task IDs and their respective correctness to estimate learners’ mastery of skills 

and predict their performance in upcoming game tasks; (2) employing fixed sequences of 

tasks and their correctness (e.g., 10, 15, and 19) and not being applicable to varying 

sequences; and (3) being uncapable to early predict learners’ performances using limited 

sequences of their actions (e.g., using 20% of action sequences to early predict midterm 

and final scores).  

The objective of our study is to expand the related works by leveraging diverse 

deep neural network models, enriched with stealth assessment, to anticipate learners’ 

performance in educational games at an early stage. To this end, we propose a predictive 

learner modelling approach named DeepLM, which integrates in-game data along with 

current assessments of learners’ knowledge and competencies to predict their performance. 

The approach includes the early prediction of learners’ final scores in ongoing game 

episodes, as well as simultaneous multi-step prediction of midterm and final scores. 

Additionally, our approach experiments with different variants of deep neural networks 

(including convolutional networks) rather than simply selecting a sequence-based deep 

learning model like LSTM or RNN to find the best performing for the task. 

3. DeepLM: Early prediction of learners’ midterm and final scores 

This section presents our proposed method for early prediction of learners’ performance in 

educational games. The approach involves the segmentation of gameplay into multiple 

time windows that represent learners’ sequential actions and estimation of their current 

competencies. To accomplish this, the DeepLM approach leverages a variant of deep 

neural networks to capture the latent knowledge states of learners and predict their midterm 

and final scores simultaneously. The subsequent section details the DeepLM approach in 

depth. 

3.1. Early prediction task 

In the AutoThinking game, learners are tasked with developing solutions to help a mouse 

evade cats and accumulate scores, with the potential to create up to 20 solutions of varying 
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quality during gameplay. Our study focuses on predicting learners’ midterm and final 

scores using a limited sequence of their actions over time, specifically by utilizing the first 

n action sequences of learners who have completed the third level of the game (as the game 

only logs learner digital traces during the third level). To accomplish this task, we create 

time windows of game data for each learner, in which we extract feature vectors based on 

their solutions and actions at intervals determined by a maximum solution size τ and a 

percentage p of their action sequences. These time windows are used to generate 

collections of solutions and actions for each game episode, from which we can predict 

learners’ midterm and final scores. Specifically, for single-step prediction or prediction of 

final scores, learners who obtained final scores lower than the mean were considered low 

performers and the rest as high performers. Therefore, according to whether a learner is a 

low or high performer, we assigned one ground truth label to each trajectory. Accordingly, 

148 and 191 learners were labelled as low and high performers, respectively. For multi-

step prediction or prediction of midterm and final scores at the same time, learners who 

obtained midterm and final scores lower than the mean were considered low performers 

and the rest high performers. This then allows us to assign two ground truth labels to each 

trajectory. Accordingly, 72 and 267 learners were labelled as low and high performers for 

midterm scores, while 148 and 191 learners were labelled as low and high performers for 

final scores. 

3.2. The proposed approach 

Fig. 1 shows the overall architecture of our proposed approach. In the first step, we gather 

and pre-process the sequence of solution submissions made by learners. We utilize a set of 

attributes associated with the final scores achieved by learners, including the number of 

collected objects, scores obtained for each action performed, and task and learner IDs, 

among others. As part of this process, we exclude game data from those learners who did 

not complete the game episode, as their final score is necessary to signify their final 

performance. Afterwards, for single-step prediction or prediction of the final score and 

multi-step prediction or prediction of both midterm and final scores simultaneously, we 

create varying time windows or sequences of input vectors using the sequence of learners’ 

actions (including estimation of learners’ current knowledge). Thereafter, we discretize 

learners’ scores using their average scores and create low and high performers scores for 

every learner. We create labels for the single-step prediction using learners’ final score 

category, and for the multi-step prediction, both midterm and final score categories are 

used. More specifically, we create time windows using 20%, 30%, 40%, 50%, 60%, and 

70% of action sequences for each learner in the single-step prediction, while we develop 

20%, 30%, 40%, and 50% of their action sequences for the multi-step prediction of 

midterm and final scores simultaneously. For learners’ final scores, we consider their final 

solution number, and for their midterm score, we use both the final solution number and 

the size of their action sequences. For instance, for a learner with 10 developed solutions, 

using 20% of action sequences (in other words, two solution submissions), the score 

obtained at the end of solution number 10 is considered the final score, whereas the score 

gained at the end of solution six is considered the midterm score. Obviously, according to 

game conditions, objectives, and requirements, this way of determining midterm scores 

could be changed. 

Upon creating nonstationary time windows, the subsequent step involves 

generating multiple datasets for the early prediction of a learner’s final or midterm and 

final scores. The data is normalized using Z-transformation, followed by the 
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implementation of Nearest Neighbour imputation to predict and replace missing values, 

which primarily arise due to the varying nature of the created time windows. Once this is 

done, the data is split using shuffled sampling to create datasets for cross-validation and 

application (independent dataset, see section 4.2). Depending on the length of action 

sequences or time windows, the Synthetic Minority Oversampling Technique (SMOTE) is 

applied to balance the classes. SMOTE focuses on generating synthetic samples for the 

minority class by creating new instances that combine the features of existing minority 

class samples. This approach aids in creating a more balanced representation of the classes 

in the dataset, which is particularly important for training accurate machine learning 

models. By introducing these synthetic instances, SMOTE helps the model better 

understand and learn from the minority class, ultimately improving its ability to make 

accurate predictions. 

 

Fig. 1. The DeepLM approach for early prediction of midterm and final scores 

In the second and third stages of our approach, we developed four deep learning 

models, including Multilayer perceptron (MLP or baseline model), Convolutional Neural 

Networks (CNN), Recurrent neural networks (RNN), and Long Short-Term Memory 

(LSTM) networks. We fine-tuned the models’ parameters, such as the number of layers 
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and nodes, and learning rate, using an evolutionary approach based on a Genetic algorithm. 

We opted for evolutionary parameter optimization instead of grid and greedy search due to 

its advantage in cases where the ideal parameter ranges are uncertain. To evaluate the 

performance of our models, we employed a 10-fold cross-validation technique with 

shuffled sampling. Additionally, we assessed the practicality, stability, and robustness of 

the models using independent test sets. 

4. Experimental evaluation 

4.1.  Context on the AutoThinking game for computational thinking 

AutoThinking represents an educational game developed to enhance learners’ prowess in 

computational thinking. It includes three levels, with the first two being mostly 

introductory and non-adaptive. Instead of relying on conventional programming languages, 

the game employs icons to symbolize programming concepts, thus removing the possibility 

of syntax errors. Additionally, AutoThinking provides adaptivity in both gameplay and the 

learning process by adaptively controlling the movements of Non-Playable Characters 

(NPCs) and offering feedback/hints, respectively. The game focuses on four important 

computational thinking skills: breaking problems into smaller steps (algorithmic thinking), 

making plans by noticing patterns, finding and fixing errors (debugging), and simulating 

solutions. It also teaches three basic concepts about programming: doing things step by 

step, making choices based on situations, and doing things over and over again (Hooshyar 

et al., 2019b). 

 

Fig. 2(a). A solution developed by a learner (taken from Hooshyar, 2022) 

In the game, learners pretend to be a mouse and go through different levels. The 

goals are to collect cheese, get points, and avoid the NPCs (i.e., cats) in a maze. Learners 

can use up to 20 different strategies to get all 76 pieces of cheese. Solutions that incorporate 
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computational thinking concepts and skills, as well as navigating through non-empty tiles 

receive higher scores. Learners have the flexibility to develop various solutions, including 

using functions to save and apply patterns in different situations, and the game provides 

adaptive feedback and hints. Examples of a learner-developed solution, as well as video 

feedback generated by the game are illustrated in Fig. 2(a) and Fig. 2(b), respectively. 

 

Fig. 2(b). Feedback generated for the situation (taken from Hooshyar, 2022) 

4.2.  Datasets 

This study utilized log data collected from 427 Autothinking game learners from five 

countries (i.e., Estonia, France, South Korea, Taiwan, and South Africa) between 

December 2019 and April 2022, resulting in a dataset of 6199 solutions or examples. The 

learners varied in age and background, and some data were collected during experimental 

studies in France, Taiwan, and Estonia (e.g., El Mawas et al., 2020b; Hooshyar et al., 

2021b), while others were collected from learners playing the game independently.  

To evaluate the learners’ computational thinking mastery, this study considered 

features related to their scores, such as the number of small and big cheese eaten, the 

frequency of simulation and debug usage, task IDs, arrow, loop, and conditional usage, 

command length (number of elements used in each solution), function bar usage, feedback 

and hints frequency, bumping into walls frequency, learner IDs, scores obtained for using 

computational thinking skills and concepts in a single solution, overall score for a single 

solution and game episode, and the Bayesian estimate of the learner’s current knowledge 

or quality of the developed solutions and computational thinking concepts (for further 

information on the Bayesian estimates and other features, see also Hooshyar et al. 2019b).  

After filtering out incomplete data, two datasets were created for cross-validation 

and independent application phases using shuffled sampling. The validation dataset 

contained 5272 solutions from 305 learners (134 low and 171 high performers before 



   

 

   

   

 

   

   

 

   

   408 D. Hooshyar et al. (2024)    
 

    

 

 

   

   

  

   

   

 

   

       
   

upsampling, and 171 each after upsampling), while the independent application dataset 

contained 586 solutions from 34 learners (14 low and 20 high performers). Table 1 

illustrates the basic statistics of the included attributes in datasets for cross-validation and 

independent application phases. To investigate the performance of the proposed approach 

in early score prediction using different sequences of learners’ actions, different versions 

of each dataset (for validation and application phases) were developed, consisting of 20-

70% of the learners’ action sequences.  

Table 1 

Basic statistics of the datasets 

Attributes 
Validation Application 

Min Max Average Min Max Average 

Big cheese 0 2 .110 0 1 .094 

Big cheese random 0 2 .10 0 2 .089 

Small cheese 0 30 4.040 0 19 4.060 

Simulation 0 1 .809 0 1 .814 

Debug 0 1 .947 0 1 .947 

Function 0 4 .030 0 2 .031 

Command length 0 10 6.826 1 10 6.725 

Task  0 20 6.329 0 19 4.060 

Arrow 1 10 5.555 1 10 5.387 

Loop 0 3 .419 0 3 .480 

Conditional  0 3 .201 0 3 .174 

Feedback  0 3 .183 0 3 .176 

Hint 0 1 .099 0 1 .099 

Bumping into walls 0 14 .455 0 10 .357 

Knowledge estimates 0 1 .409 0 1 .418 

Command score 0 490 31.150 0 360 33.480 

Solution score -990 1850 157.520 -930 1650 140.787 

Final score -1980 4033 1265.386 -1550 3929 1323.551 

4.3.  Experiment setting and evaluation 

In this study, a computer with a single AMD Ryzen 5 PRO 4650U CPU and 16.0 GB 

memory was utilized to train the deep learning models. Stochastic Gradient Descent 

optimization using standard Backpropagation and ADAM updater with a learning rate of 

0.01 and 10 epochs were employed to train the models. Regularization was also applied 

with L1 and L2 values set to 1. For the MLP (baseline) model, we used two fully connected 

layers with 50 neurons and the activation function of the Sigmoid. The RNN and LSTM 

models used recurrent and long-short term layers with 50 neurons and Sigmoid activation 

functions. The CNN model used a convolutional layer with 64 activation maps, Kernel size 

of 3, Stride size of 1, and a padding model of Truncated. On top of this, the model used a 

fully connected later with 10 neurons.  

In order to assess the effectiveness of our models during the validation stage, we 

utilized k-fold cross-validation. This method is highly regarded for validating predictive 

models, particularly when the dataset is relatively small. We chose a value of k = 10 based 

on empirical evidence that suggests it produces test error rate estimates that do not suffer 
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from either excessive variance or high bias. In the application phase, we evaluated the 

cross-validated models using the independent game dataset. Ultimately, we compared the 

performance of various models using six distinct sequences of learners’ actions. 

5. Results and analysis 

Four metrics of the area under the curve (AUC), accuracy, precision, and recall are used to 

evaluate the performance of the models. The AUC is the measure of separability between 

the positive and negative classes and helps to identify how much the models are capable of 

distinguishing between low and high scores (in our case). Accuracy evaluates how many 

times the models were correct overall, precision has to do with how well the models do at 

predicting a particular class, and finally recall shows how many times the models were able 

to detect a particular class. As these metrics have their caveats (e.g., accuracy is not 

appropriate for imbalanced datasets), we considered them all to account for various aspects 

of the models. 

5.1.  Validation phase: Single-step prediction 

We evaluated the performance of the models using the four metrics and the results are 

illustrated in Tables 2 and 3. The tables show performance measures of the models on data 

from 305 learners (with 5272 solutions) using 10-fold cross-validation. Fig. 3(a) to Fig. 3(f) 

demonstrates predictions of the models on 20-70% of learners’ actions using the AUC 

metric, and Fig. 4 shows their accuracy, precision, and recall on 20-50% of learners’ 

actions. Because our proposed approach focuses on the early prediction of final scores, 

more attention is given to the shorter action sequences (i.e., 20-50%).  

Overall, the CNN model has performed better than other models regardless of the 

length of action sequences. After the CNN, the LSTM model appeared to perform better 

compared to the RNN and MLP. Specifically, based on the AUC metric, the CNN model 

outperformed other models using 20-70% of the learner’s actions. As shown in Table 3, 

according to accuracy, precision, and recall, on 20-40% and 70% of learners’ actions the 

CNN model outperformed all other models. However, based on these metrics, on 50% and 

60% of actions, the LSTM slightly performed better than others. In general, both the RNN 

and the baseline models showed lower performance than the other two models. Given these 

results, it can be concluded that the CNN model has a better prediction performance for the 

early prediction task, especially when it comes to the shorter length of action sequences. 

Table 2 

AUC measure of the models on single-step prediction using cross-validation 

Length of action sequences (%) LSTM RNN CNN MLP (baseline) 

20% of actions 0.762 0.745 0.805 0.698 

30% of actions 0.801 0.773 0.828 0.777 

40% of actions 0.766 0.799 0.869 0.777 

50% of actions 0.824 0.809 0.875 0.831 

60% of actions 0.831 0.831 0.858 0.804 

70% of actions 0.816 0.819 0.849 0.805 
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Fig. 3(a). AUC measure of the models on single-step predictions using 20% of learners’ 

actions in cross-validation 

 

 

 

Fig. 3(b). AUC measure of the models on single-step predictions using 30% of learners’ 

actions in cross-validation 
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Fig. 3(c). AUC measure of the models on single-step predictions using 40% of learners’ 

actions in cross-validation 

 

 

 

Fig. 3(d). AUC measure of the models on single-step predictions using 50% of learners’ 

actions in cross-validation 
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Fig. 3(e). AUC measure of the models on single-step predictions using 60% of learners’ 

actions in cross-validation 

 

 

 

Fig. 3(f). AUC measure of the models on single-step predictions using 70% of learners’ 

actions in cross-validation 
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Table 3 

Model performances on single-step prediction using cross-validation 

Models Length of action 

sequences (%) 

Accuracy (%) Recall (%) Precision (%) 

LSTM 

20 68.5 75.1 66.2 

30 72.8 78.1 70.9 

40 67.6 65.5 69.3 

50 75.2 79.6 72.3 

60 75.7 75.7 76.2 

70 74.5 77 73.2 

RNN 

20 66.4 68.9 66.6 

30 66.6 70.9 67.4 

40 68.4 76.3 67.4 

50 71.9 74.5 70.5 

60 72.2 76.1 71.2 

70 75.4 75.6 74.8 

CNN 

20 71.1 81.2 67.8 

30 73.4 81.6 70.5 

40 76 71.8 82.1 

50 72.9 77.7 74.2 

60 71.7 76.5 72.8 

70 77.5 81.9 75.3 

MLP (baseline) 

20 62 69.6 61.7 

30 70.5 74.8 69.9 

40 64.1 69.6 66.41 

50 72.3 73.3 71.4 

60 72.5 73.8 71.2 

70 74.3 76.8 73.4 

 

 

Fig. 4. Performance of the models on single-step prediction using cross-validation 

(accuracy, precision, and recall) 
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5.2.  Application phase: Single-step prediction 

In this section, we investigate the performance of the cross-validated models on the 

independent game data from 34 learners (with 586 solutions). Table 4 shows the 

performance of the models using the AUC, and Table 5 lists the model performance using 

accuracy, precision, and recall. Additionally, Fig. 5 demonstrates the models’ accuracy, 

recall, and precision for 20-50% of action sequences.  

Based on the results of Table 4, overall, the CNN model has outperformed all other 

models. More specifically, on 20 to 40% of action sequences, the AUC metric has selected 

CNN as the best. On 50%, 60%, and 70% of actions, according to the AUC metric, the 

MLP, LSTM, and RNN are performing slightly better, respectively. Based on the accuracy, 

recall, and precision, the CNN model steadily shows a better performance than the other 

models on 20-50% of action sequences. On 70% of action sequences, the RNN model 

outperformed other models based on accuracy, while the CNN model appeared to have 

better recall and precision. Given these results, it can be concluded that the CNN model 

has a better prediction performance for the early prediction task regardless of the length of 

action sequences. 

Table 4 

AUC measure of the models on single-step prediction using the independent dataset 

Length of action sequences (%) LSTM RNN CNN MLP (baseline) 

20% of actions 0.771 0.704 0.811 0.779 

30% of actions 0.807 0.821 0.879 0.843 

40% of actions 0.804 0.750 0.825 0.789 

50% of actions 0.850 0.850 0.864 0.911 

60% of actions 0.904 0.761 0.861 0.850 

70% of actions 0.793 0.811 0.804 0.807 

 

 

 

Fig. 5. Performance of the models on single-step prediction using the independent dataset 

(accuracy, precision, and recall) 
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Table 5 

Model performances on single-step prediction using the independent dataset 

Models Length of action 

sequences (%) 

Accuracy (%) Recall (%) Precision (%) 

LSTM 

20 70.6 64.3 64.3 

30 73.5 71.4 66.7 

40 76.5 71.4 71.4 

50 73.5 64.3 69.2 

60 85.3 85.7 80 

70 70.6 64.3 64.3 

RNN 

20 61.8 85.7 52.2 

30 79.4 92.9 68.4 

40 76.5 64.3 75 

50 70.6 85.7 60 

60 67.7 50 63.6 

70 79.4 78.6 73.3 

CNN 

20 82.4 85.7 75 

30 82.4 78.6 78.6 

40 82.4 78.6 78.6 

50 85.3 78.6 84.6 

60 70.6 85.7 60 

70 70.6 81.9 75.3 

MLP (baseline) 

20 70.6 64.3 64.3 

30 61.8 92.9 52 

40 70.6 78.6 61.1 

50 82.4 85.7 75 

60 73.5 85.7 63.2 

70 73.5 78.6 64.7 

5.3. Validation and application phase: Multi-step prediction 

To evaluate the performance of the deep learning models on multi-step prediction of 

midterm and final scores, we also used AUC, as well as average accuracy, recall, and 

precision metrics. Table 6 lists the AUC of the CNN and baseline model using 20-50% 

length of action sequences on both cross-validation (data from 5611 solutions) and 

independent datasets (560 solutions). The reason for comparing the baseline model with 

the CNN model is that in our previous experiment on single-step prediction, the CNN 

model was found to be the most robust model for most lengths of action sequences. Fig. 6 

and Fig. 7 demonstrate predictions of the models on 20-50% of learners’ actions using 

accuracy, recall, and precision using cross-validation and the independent dataset, 

respectively. Because our proposed approach early predicts both midterm and final scores 

at the same time, predictions of more than 50% have not been considered.  

In the validation phase, regardless of the length of action sequences, the CNN 

consistently outperformed the MLP model on all measures. Likewise, in the application 

phase, the CNN model showed a better performance compared to the baseline model on all 

four measures. Consequently, it can be concluded that the CNN model has a better 

prediction performance for the early multi/step prediction task. 
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Fig. 6. Performance of the models on multi-step prediction using cross-validation 

(accuracy, precision, and recall) 

 

 

 

Fig. 7. Performance of the models on multi-step prediction using the independent dataset 

(accuracy, precision, and recall) 
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Table 6 

AUC of the models on multi-step prediction using cross-validation and the unseen 

Dataset 

length of action 

sequences (%) 

CNN MLP (baseline) 

Cross-validation  Unseen dataset Cross-validation Unseen dataset 

20% of actions 0.776 0.808 0.717 0.603 

30% of actions 0.844 0.793 0.783 0.715 

40% of actions 0.889 0.848 0.829 0.745 

50% of actions 0.914 0.839 0.860 0.794 

6. Discussion and conclusions 

This study introduces a new method called DeepLM that uses advanced machine learning 

techniques to predict learners’ midterm and final scores in computer-based educational 

games. The proposed approach considers learners’ actions during gameplay and their 

estimated knowledge level to predict future performance. The results of this study suggest 

that the proposed approach can accurately predict both midterm and final scores with an 

AUC of up to 0.91 and 0.84, respectively, using cross-validation and independent datasets. 

The CNN model was also found to be effective, achieving an accuracy of 82% and 78% 

using cross-validation and independent datasets, respectively. Overall, the CNN model 

consistently outperformed other models, especially the RNN and MLP (baseline). More 

specifically, regarding the performance of the models on the single-step prediction of the 

final score in the validation phase, results showed that the CNN could robustly distinguish 

between the high and low scores, outperforming other models with AUC and accuracy of 

higher than 0.80 and 71%, respectively, in all length of action sequences. While not as high 

as the CNN, the LSTM model achieved performance better than both the RNN and the 

baseline (MLP). The lowest performance belongs to the MLP (baseline model, with 

accuracy as low as 62% for the 20% action sequences. Concerning the performance of 

different models on the single-step prediction of the final score in the application phase, 

results showed that the CNN could successfully predict learners’ final score, especially in 

the shorter length of action sequences. Particularly, in sequence lengths of 20-50%, the 

CNN model showed better performance, while in 60% and 70% action lengths, the LSTM 

and RNN appeared to be performing better. Aside from 50% of action lengths, the baseline 

model seemed to be the lowest performing.  

When it comes to early prediction of both midterm and final scores simultaneously, 

in both validation and application phases, the CNN model could achieve AUC ranging 

from 0.77 to 0.91, outperforming the baseline model. The highest and lowest AUC was 

achieved using 50% and 20% of action sequences, respectively. Additionally, the CNN 

model achieved accuracy as high as 82% on 50% of action sequences in the validation 

phase, as well as accuracy as high as 78% on 50% of action sequences in the application 

phase. Interestingly, unlike other models, the performance of the CNN model did not 

decrease much either by increment in the length of action sequences or by being validated 

against independent datasets. Therefore, the CNN model could robustly early predict the 

final and midterm scores at the same time using both cross-validation and unseen datasets.  

Overall, a closer look at the behaviour of the models reveals that the LSTM model 

sometimes shows performance close to the CNN, especially in longer lengths of action 
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sequences. The unsurprising reason is that for a long time, the LSTM holds single 

observations in its memory. This may not be helpful in cases when there are smaller or 

shorter models that do not require remembering long-term sequential dependencies. In our 

findings, it was also observed that the RNN seems to be more successful using shorter 

lengths of action sequences because it often looks at the recent inputs (short-term 

modelling). Thus, the LSTM showed to have benefited from the increment in length of 

action sequences, whereas the RNN model’s performance may fall by increment in action 

sequences. Finally, as the CNN model can identify local patterns better, it appears to be the 

most robust and best performing in comparison to other models. In other words, the CNN 

model seems to learn patterns within the time window better without having assumptions 

about the history being complete. Lastly, the MLP baseline model appeared not to be as 

successful as other models in handling the sequential data, and to have lower performance 

on shorter sequence lengths which is imperative for early predictive tasks.  

Surprisingly, although CNN is not specially designed for sequential tasks and non-

image data (in general), it could outperform specialized deep learning models like RNN 

and LSTM. The reason is that CNN considers the assumption that similar local patterns are 

related everywhere and ignores relationships between each sequence step’s hidden vectors. 

Another reason that makes the CNN model stand out is its computational lightness due to 

fewer sequential calculations. The results of our experiments are aligned with the findings 

of Hooshyar et al. (2022) and Nabi et al. (2021) as they also reported the superiority of the 

CNN over sequential models like RNN and LSTM when predicting using small feature 

sizes.  

From an educational perspective, the incorporation of our proposed DeepLM 

approach holds the potential for integrating stealth and continuous assessment of learners’ 

knowledge and skills into various types of educational games. By employing DeepLM, we 

can effectively harness in-game data to enable accurate early predictions of learners’ 

performance. For instance, when developing solution number five (out of 20 in the 

Autothinking game), the DeepLM approach accurately early predicts learners’ 

performance at the end of solution number 12 and 20.  

The utilization of early predictions afforded by DeepLM enables the provision of 

optimal learning items or task sequences tailored to individual learners. This personalized 

approach allows educators and game designers to offer targeted feedback, hints, and 

interventions that cater to learners’ specific needs. Furthermore, the adaptive learning task 

sequences generated by DeepLM facilitate the creation of NPCs that can dynamically adapt 

to learners’ abilities and requirements. Ultimately, these enhancements contribute to 

improving educational game retention by fostering a highly engaging and tailored learning 

experience. 

It is noteworthy that our study confirms the findings of Lee-Cultura et al. (2020) 

that in-game data can be utilized for early prediction of learners’ performance. However, 

unlike Lee-Cultura et al. (2020) work, our proposed approach employs a state-of-the-art 

deep neural network to model latent information from in-game data. Additionally, our 

approach demonstrates efficacy in both single- and multi-predictions of learners’ midterm 

and final scores simultaneously. This versatility offers educators and game designers a 

comprehensive understanding of learners’ progress and enables them to make informed 

decisions regarding instructional strategies and interventions. 
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6.1.  Limitations and future works 

There are a number of limitations in the proposed approach that need to be addressed in 

future works. Although our proposed approach could achieve high accuracy while 

maintaining a relatively balanced trade-off between recall and precision, yet mis-classifies 

some computational thinking solutions. Considering the high-risk nature of education, 

future research can explore the implementation of hybrid models and employ advanced 

data augmentation techniques to enhance the accuracy of predictions. Furthermore, it is 

advantageous to apply the suggested method to datasets from additional educational games 

in order to more thoroughly explore its applicability across various contexts. Finally, as the 

effectiveness of the proposed approach on learners in the real-world is unknown, it is 

desirable to integrate the proposed approach into the game and evaluate its effectiveness in 

real-world classrooms, providing personalized learning that is interpretable. 
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